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APPLICATION OF THE DENSITY-FUNCTIONAL METHOD

FOR NUMERICAL SIMULATION OF FLOWS

OF MULTISPECIES MULTIPHASE MIXTURES

UDC 532.546A. Yu. Dem’yanov1 and O. Yu. Dinariev2

Numerical examples of application of the density functional used to describe isothermal flows of
two-phase two-species mixtures are given. The following flows are calculated in a two-dimensional
formulation: impact of a drop on a liquid layer, breakdown of a drop in the velocity field of the
Couette flow, formation of the wetting angle of a drop on a solid surface, and development of the
Rayleigh–Taylor and Kelvin–Helmholtz instabilities at the gas–liquid interface.
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Introduction. The density-functional method allows one to describe a multispecies multiphase mixture
in a continuous manner, without density jumps and phase interfaces. This is achieved by introducing squared
gradients of densities of the components into the expression for free energy of the mixture (or into the expression
for entropy) [1–5]. The main advantage of this approach is the possibility of finding the distribution of phases in
space as one of the results of solving a single continuous problem. In this case, there is no need to a priori prescribe
the geometry of interphase surfaces, solve hydrodynamic equations for each phase separately, and use conditions on
jumps. An important feature of the density-functional method is the allowance for the structure of the interphase
region. This leads to effects observed for a liquid flow in a capillary with surface-active walls [6] and for the spectrum
of capillary-gravitational waves [7]. In addition, the method allows one to describe the flow of a gas–condensate
mixture in a capillary [8].

In the present work, we consider the use of the density-functional method in numerical simulations of
multiphase flows. The governing equations of the theory are derived in Sec. 1. Section 2 deals with the algorithms
of numerical implementation of these equations and examples of calculations of a number of typical isothermal
two-phase flows: coalescence of a drop with a liquid layer, breakdown of a drop in the velocity field of a shear flow,
drop spreading on a solid surface, and development of the Rayleigh–Taylor and Kelvin–Helmholtz instabilities at
the gas–liquid interface. Finally, the results obtained and the further capabilities of the method are discussed.

1. Governing Equations of the Density-Functional Theory. In the present work, we consider
isothermal flows only. The basic theoretical postulates for this case are briefly described below [3]. The theory of
nonisothermal flows is described in [4].

Let an M -species mixture (gas or liquid) fill a domain D with a piecewise-smooth boundary ∂D corresponding
to the contact with a motionless solid phase. We use the following notation: ni is the molar density of the ith
species; the subscripts i, j, and k are assumed to run through the values 1, . . . ,M corresponding to the number
of the species in the mixture, and the subscripts a, b, and c take the values 1, 2, and 3 corresponding to the
Cartesian coordinates xa. If not indicated otherwise, summation is performed over repeated subscripts. The
following abbreviated notation is used for derivatives: g,i = ∂g/∂ni and ∂ag = ∂g/∂xa.
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Static Conditions. The functional of free energy of the mixture is given by the expression

F =
∫
D

ω dV +
∫

∂D

f∗ dA, (1.1)

where ω = f + (1/2)νij ∂ani ∂anj + ρϕ, f = f(ni) is the free energy of a unit volume of a homogeneous mixture,
f∗ = f∗(ni) is the free energy of a unit surface, νij = νij(nk) are the coefficients of a positive symmetric matrix, dV

and dA are the volume and surface elements, ϕ = ϕ(xa) is the gravitational potential, ρ = mini is the mass density
of the mixture, and mi is the molar mass of the ith component.

The equilibrium states of the mixture are critical points of functional (1.1) for a fixed number of particles of
components in the mixture

Ni =
∫
D

ni dV. (1.2)

Calculating the variation of functional (1.1), we obtain the expression

δF =
∫
D

Φiδni dV +
∫

∂D

Φi∗δni dA. (1.3)

Here

Φi = f,i + miϕ + (1/2)νjk,i ∂anj ∂ank − νij,k ∂anj∂ank − νij ∆nj ;

Φi∗ = f∗,i − νij la ∂anj ,

where la is the inner normal to the surface ∂D and ∆ = ∂a ∂a.
Using expression (1.3), we can write the variation equation for the equilibrium states with the Lagrangian

multipliers Λi

δF − Λi δNi = 0,

which yields the system of elliptic equations

Φi − Λi = 0 (1.4)

and the boundary conditions

Φi∗ = 0. (1.5)

The Lagrangian multipliers Λi should be determined by solving problem (1.4), (1.5) with respect to unknown
density fields of the component ni from additional integral conditions (1.2).

Dynamic Conditions. As the governing hydrodynamic equations for isothermal flows, we use the conventional
equations for densities and momentum [9]

∂tni + ∂aIia = 0; (1.6)

ρ(∂tva + vb∂bva) = ∂bpab − ρ ∂aϕ, (1.7)

where Iia is the flux vector of the ith component, va = ρ−1miIia is the mean-mass velocity, and pab is the stress
tensor in the mixture.

We introduce auxiliary quantities: the vector of the diffuse flux of the ith component Qia = (Iia − niva),
τab = pab − σab, and

σab = (ω − Φini)δab − νij ∂ani ∂bnj . (1.8)

The hydrodynamic description involves usual boundary conditions on dynamic variables: the no-slip condi-
tion

va

∣∣∣
∂D

= 0 (1.9)
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and the impermeability condition for the diffuse fluxes

laQia

∣∣∣
∂D

= 0. (1.10)

In addition, we assume that the boundary conditions (1.5) are satisfied in both static and dynamic cases.
We determine the functional of the total energy of the system, including the free energy (1.1) and the kinetic

energy of the mixture:

E = F +
1
2

∫
D

ρvava dV. (1.11)

Direct calculation of the derivative of functional (1.1) in time with allowance for expression (1.3) and Eqs. (1.5)–
(1.10) yields the relation

dE

dt
=

∫
D

Σ dV, (1.12)

where

Σ = −τab ∂avb + Qia ∂aΦi. (1.13)

The hydrodynamic model should be dissipative, i.e., the following inequality, which is an analog of the
condition of nonnegative entropy production, should be satisfied:

dE

dt
6 0. (1.14)

Owing to relations (1.12) and (1.13), inequality (1.14) is satisfied if the following inequality holds:

Σ 6 0. (1.15)

Note, relations (1.12) and (1.13) allow us to interpret τab as the tensor of viscous stresses, since it is this
component of the total stress tensor pab that contributes to dissipation. Hence, σab should be interpreted as
the tensor of static stresses in the mixture, because it is independent of velocity and is determined only by the
distribution of densities of the components.

To close the hydrodynamic problem (1.6)–(1.10), (1.5), we need material relations, i.e., expressions for the
quantities τab and Qia. These expressions should be compatible with inequality (1.15). Of greatest interest is the
model that is the minimum generalization of the model of a viscous multispecies mixture [9, 10]. Thus, for the
viscous stress tensor, we use the linear-viscous Navier–Stokes model

τab = (µv − (2/3)µs)∂cvcδab + µs(∂avb + ∂bva), (1.16)

where µv and µs are the positive coefficients of volume and shear viscosity, respectively.
For diffuse fluxes, we use relations that generalize the Fick law

Qia = −Dij ∂aΦj , (1.17)

where Dij is a symmetric nonnegative matrix satisfying the additional condition

Dijmj = 0. (1.18)

Let us discuss the physical meaning of the tensor of static stresses σab. For a homogeneous mixture, this
tensor reduces to the usual stress tensor in an ideal liquid σab = −p δab, where p = (nif,i − f) is the hydrostatic
pressure.

The tensor σab can differ from the stress tensor of an ideal liquid in the region where the density gradients
reach considerable magnitudes. To find the role of these gradients in the stress tensor, it is convenient to consider
the equilibrium two-phase state with the dependence on only one coordinate x1. In this case, ni = ni(x1) and
va = 0. As x1 → ±∞, the density of components and the stresses converge to the densities and stresses in phases A

and B: x1 → −∞, ni → niA, and σab → −pA δab; x1 → +∞, ni → niB , and σab → −pB δab.
As is known [3], the conditions of thermodynamic equilibrium of the state considered yield the condition

of mechanical equilibrium: ∂1σ11 = 0. From here and from the above-described considerations, it follows that
σ11 = −pA = −pB and σ22 = σ33 = σ11 + νij ∂1ni ∂1nj = −pA + νij ∂1ni ∂1nj .
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Thus, the density gradients contribute to the transverse components of the stress tensor. They provide emer-
gence of tension in the interphase region. The integral of this distributed tension over the longitudinal coordinate
should be identified with the coefficient of interphase surface tension [3]

γ =

+∞∫
−∞

νij ∂1ni ∂1nj dx1. (1.19)

It should be noted that the expression for the tensor of static stresses σab is derived from the expression
for free energy (1.1) in a standard manner. The expression for the stress tensor in more complicated models of
continuous media was derived in [11, 12]. The stress tensor for the model of a single-species liquid with a squared
density gradient in free energy was considered in [13].

2. Examples of Numerical Simulations of Two-Phase Flows. The study of capabilities of the density-
functional method for numerical simulation of multiphase flows is at the early stage. Some encouraging results were
obtained for a number of typical problems; part of them are described below for the case of plane isothermal flows
of viscous two-phase two-species media.

The governing system of equations is composed of the equations of conservation of the species (1.6) and the
equation of momentum (1.7). We use expression (1.8) for the tensor of static stresses σab, (1.16) for the tensor of
viscous stresses τab, and (1.17) for the diffusion fluxes Qia.

In using the density-functional method for two-phase media, such as liquid–liquid or gas–liquid systems, one
should specify a particular form of the function of free energy and the values of the coefficients of viscosity, diffusion,
and surface tension on the contact between the mixture and the solid phase, as well as the coefficients νij .

If the deviations of densities from certain fixed equilibrium values are small, the free energy of one phase
(phase A) can be presented as the quadratic polynomial

fA(ni) = fA0 + fAi(ni − niA) + (1/2)fAij(ni − niA)(nj − njA). (2.1)

Here, niA is the undisturbed value of molar density for phase A.
The coefficients fA0 and fAi do not enter the hydrodynamic equations; they are used to calculate the initial

undisturbed pressure and chemical potentials. These coefficients can be set to zero. The coefficients important
for hydrodynamic simulation are only fAij , which are chosen in accordance with data on the volume modulus of
elasticity for phase A:

EA = fAijniAnjA. (2.2)

In the case of a two-phase flow (phases A and B), the free energy f is determined via the expressions for fA(ni),
fB(ni) as follows:

f = fAfB/(fA + fB). (2.3)

It is assumed that the shear and volume viscosities of each phase are known. Viscosity for an arbitrary
density of components is calculated by empirical formulas, which allow one to find the viscosity of the mixture from
the known viscosity of the components (see [14, formula (VIII-54)]):

µs =
(
cAµ

1/3
sA + cBµ

1/3
sB

)3

, µv =
(
cAµ

1/3
vA + cBµ

1/3
vB

)3

. (2.4)

Here

cA = zB/(zA + zB); cB = zA/(zA + zB);

zA =
( 2∑

i=1

(ni − niA)2
)1/2

; zB =
( 2∑

i=1

(ni − niB)2
)1/2

.

To calculate the matrix Dij , we note that Eq. (1.17) for νij = 0 yields the expression for the concentration
flux of components

qia = n−1Qia = −n−1Dij

(∂æj

∂c

)
n
∂ac− n−1Dij

(∂æj

∂n

)
c
∂an,
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where n =
2∑

i=1

ni is the total density, c = n1/n is the concentration of component No. 1, and æi = f,i is the chemical

potential.
Thus, the tabulated diffusion coefficient d of component No. 1 in the mixture is related to the matrix Dij as

d = n−1D1j

(∂æj

∂c

)
n
. (2.5)

The diffusion coefficient d is calculated from the known values in phases dA and dB : d = cAdA + cBdB . If
the free energy is prescribed [see (2.1)–(2.3)], then, based on the coefficient d, Eq. (2.5) with allowance for (1.18)
uniquely determines the matrix Dij . The surface tension on the mixture–solid contact is assumed to be a linear
function of the densities of the components:

f∗ = ξ1ini + ξ0. (2.6)

The parameters ξ0 and ξ1i are calculated from the known values of surface tension on the contact with the solid
body for phases A and B:

θA = ξ1iniA + ξ0, θB = ξ1iniB + ξ0. (2.7)

The system of linear equations (2.7) always has a solution, but this solution is not unique. The arbitrariness
in the choice of dependence (2.6) affects the distribution of components near the solid wall but does not affect the
wetting angle.

The matrix of coefficients νij is assumed to be constant and proportional to a unit matrix. The unknown
coefficient is found from the formula for surface tension between the phases A and B [3] similar to relation (1.19):

γ =

+∞∫
0

νij ∂rni ∂rnj dr. (2.8)

The integral in formula (2.8) is calculated for the static solution of the problem of a drop of phase A placed into
phase B or, vice versa, of a drop of phase B placed into phase A.

Thus, relations (2.1)–(2.8) allow us to fix the model parameters. For all problems considered, we used γ = 0.1
(hereinafter, all dimensional quantities are given in the SI system).

System (1.6)–(1.10), (1.5), (1.16), (1.17) was solved numerically with the use of an explicit conservative
difference scheme based on the concept of the method of coarse particles [15]. In this case, the “Lagrangian” stage
completely coincides with [15], and the “Eulerian” stage is constructed under the assumption of the absence of
pressure in conservation equations (the terms with the pressure gradient are determined via the derivatives of the
free energy f : p = nif,i − f).

To study the capabilities of the density-functional method, the following model problems were numerically
analyzed:

1) interaction of a liquid drop (phase A) surrounded by another liquid (phase B) with a plane layer of the
liquid (phase A);

2) fragmentation of a liquid drop (phase B) by a liquid flow (phase A);
3) interaction of a liquid drop (phase A) surrounded by another liquid (phase B) with a flat solid wall;
4) development of the Rayleigh–Taylor and Kelvin–Helmholtz instabilities at the interface between two

media.
The gray scale in computational cells in Figs. 1–4 shows the distribution of concentration of one of the

components present, which actually corresponds to the spatial distribution of the corresponding phase.
Problem 1. At the initial time, the upper half-plane contains a quiescent layer of the liquid phase B, and

the lower half-plane contains a layer of the liquid phase A. A drop of the liquid phase A moves from the upper
region to the lower region at an angle of 30◦ to the horizontal line (see Fig. 1a). The initial velocity of the drop is
10.0. The field of mass forces is directed vertically downward. Conditions (1.13) and the absence of diffusion fluxes
of components (1.14) are set on the upper and lower boundaries. Periodic conditions are imposed on the left and
right boundaries. The initial parameters of the problem are as follows: the computational domain is 60 × 50, the
cells of the difference grid are squares with a side of 0.001 m, m1 = 18, and m2 = 200; µsA = 10−3, µsB = 10−2,
µv = 10µs; the mass densities of the phases are ρA = 1000 and ρB = 800; EA = EB = 109, and dA = dB = 10−9.
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dc

bà

Fig. 1

dc

bà

Fig. 2

Figure 1b–d shows the dynamics of the process at consecutive times. The interaction results in the formation
of a structure with a thin stem of phase A (Fig. 1b) with subsequent “outflow” of the liquid from the drop into the
layer (Fig. 1c) subjected to disturbances in the form of gravitational-capillary waves (Fig. 1d).

Problem 2. At the initial time, a drop of the liquid (Phase B) is located in a nonuniform flow of another
liquid (phase A). The latter is the Couette flow formed by the upper and lower boundaries moving with identical
velocities v0 = 10 (in their planes) in different directions (the upper boundary moves from left to right, and the lower
boundary moves in the opposite direction), with conditions (1.13) and (1.14) imposed on the boundaries (Fig. 2a).
There is no mass force. Periodic conditions are imposed on the left and right boundaries. The initial parameters
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dc

bà

Fig. 3

of the problem are as follows: the computational domain is 80 × 60, µs = 10−2 for two phases, all the remaining
parameters are similar to those in problem 1.

Because of viscous forces, the drop starts to deform (Fig. 2b) and extends downstream. Figure 2c shows a
typical thinning of the drop in the central part. Later on, this part is broken, and two drops are formed (Fig. 2d).

Problem 3. At the initial time, a quiescent spherical drop of the liquid phase A surrounded by the liquid
phase B touches the lower boundary of the computational domain (Fig. 3a) simulating the solid surface. Conditions
(1.9) and (1.10) are set for velocity and diffusion fluxes on the lower boundary, and condition (1.5) is specified for
the molar densities of the phases. The function of surface tension at the mixture–solid interface is constructed by
formulas (2.6) and (2.7) with θB − θA = 0.06. The conditions of free boundaries are imposed on all the remaining
boundaries of the computational domain. There is no mass force. The initial parameters of the problem are as
follows: the computational domain is 80× 40, the size of the square cells of the difference grid is 10−4, µs = 10−3

for phases A and B, all the remaining parameters are similar to those of Problem 1.
Figure 3b–d shows the dynamics of stabilization of the drop shape on the solid surface with formation of a

sharp wetting angle.
Problem 4. At the initial time (Fig. 4a), the upper half-plane contains the gas phase A moving from right

to left with a velocity v0, and the lower half-plane contains the liquid phase B moving in the opposite direction
with the same velocity. The mass force is directed perpendicular to the interface toward the lighter gas phase. This
is the Rayleigh–Taylor instability case [16]. In the vicinity of the interface, initial disturbances of velocities are set
in the form

vx = sign (y)A sin (kx) e−k|y|, vy = A cos (kx) e−k|y| .

Here k is the wavenumber, A is the amplitude of disturbances, x is the streamwise coordinate, and y is the
transverse coordinate counted from the interface. The boundary conditions vx = v0 and vy = 0 are imposed on
the left boundary for y < 0, the conditions vx = −v0 and vy = 0 are set on the right boundary for y > 0, and the
free-boundary conditions are set on all remaining boundaries of the computational domain. The initial parameters
of the problem are as follows: the computational domain is 200 × 50, the size of the square cells of the difference
grid is 4 ·10−4, m1 = 2, m2 = 200, µs = 10−5 for phase A and µs = 10−3 for phase B, µv = 10µs, ρA = 2, ρB = 800,
EA = 107, EB = 109, dA = 10−6, dB = 10−9, v0 = 5, A = 1, and k = 314.

It follows from the analysis of the dispersion equation for the chosen parameters [16] that the Rayleigh–Taylor
and Kelvin–Helmholtz instabilities are developed near the interface, which first leads to an insignificant bending of
the interface (Fig. 4b). Then, this process transforms to the nonlinear stage with strong deformation of the interface
(Fig. 4c) and to formation of individual gas bubbles (Fig. 4d).
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c

Fig. 4

Conclusions. The numerical solutions obtained correspond to advanced theoretical concepts and experi-
mental data on dynamics of drops, wetting phenomena, and wave processes at the interface of liquid phases [17–20].
Therefore, we can state that the density-functional method can rather effectively simulate the dynamics of two-phase
mixtures in the isothermal case. The numerical scheme of through count proposed is economical and can be easily
extended to mixtures with a large number of components or a large number of phases, and also to spatial cases.

Concerning the accuracy of the method, we should distinguish between the accuracy of computations in
the single-phase region and the accuracy of computations in the interface region. In the single-phase region, the
contribution of higher derivatives to hydrodynamic equations is negligibly small, and the model actually reduces
to the usual model of a multispecies viscous liquid or gas. Correspondingly, the accuracy of computations is little
different from the accuracy of commercial software systems for single-phase viscous mixtures. Concerning the
interface region, the accuracy here depends significantly on the cell size of the computational grid. In numerical
simulations, the size of the phase-transition region is normally 3–5 cells. Thus, the accuracy of prediction of spatial
evolution of the interface is proportional to the characteristic cell size. Currently, the numerical program developed
allows computations with the number of cells of approximately 105 on a personal computer of average performance.
In our opinion, this provides sufficient accuracy for describing the dynamics of small drops or multiphase multispecies
mixtures in capillaries and porous materials, i.e., in problems of microhydrodynamics with typical dimensions of
1 µm to 1 mm.

As for hydrodynamic problems such as multiphase flows in tubes or other engineering devices, quite a large
number of grid cells are needed to reach adequate accuracy. This problem can be solved by improving the numerical
scheme or owing to an increase in computer performance.

For nonisothermal problems, the theory has been well developed [4], but numerical implementation of the
corresponding system of equations requires additional research.

Visualization of results was performed with the help of the software system VR-Geo (Joint-Stock Company
“Servis-Nafta”).
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